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Integrating artificial intelligence with SARS-CoV-2 diagnostics can help in the

timely execution of pandemic control and monitoring plans. To improve the

efficiency of the diagnostic process, this study aims to classify fluorescent

images via traditional machine learning and deep learning-based transfer

learning. A previous study reported a CRISPR-Cas13a system combined with

total internal reflection fluorescence microscopy (TIRFM) to detect the

existence and concentrations of SARS-CoV-2 by fluorescent images.

However, the lack of professional software and excessive manual labor

hinder the practicability of the system. Here, we construct a fluorescent

image dataset and develop an AI-boosted CRISPR-Cas13a and total internal

reflection fluorescence microscopy system for the rapid diagnosis of SARS-

CoV-2. Our study proposes Fluorescent Images Classification Transfer learning

based on DenseNet-121 (FICTransDense), an approach that uses TIRF images

(before and after sample introduction, respectively) for preprocessing, including

outlier exclusion and setting and division preprocessing (i.e., SDP). Classification

results indicate that the FICTransDense and Decision Tree algorithms

outperform other approaches on the SDP dataset. Most of the algorithms

benefit from the proposed SDP technique in terms of Accuracy, Recall,

F1 Score, and Precision. The use of AI-boosted CRISPR-Cas13a and TIRFM

systems facilitates rapid monitoring and diagnosis of SARS-CoV-2.
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Highlights

1) Rapid and reliable detection of AI-Boosted SARS-CoV-2 via

CRISPR-Cas13a and fluorescence imaging-based total

internal reflection fluorescence microscopy (TIRFM).

2) We propose an effective SDP technique that merges two

fluorescent images into one image, which enhances the

virus concentration classification accuracy.

3) We propose the FICTransDense model with high prediction

accuracy for virus concentration estimation.

Introduction

SARS-CoV-2 is a positive-sense single-stranded RNA

(ssRNA) virus that causes severe and life-threatening

respiratory disorders as well as lung injuries (V’kovski

et al., 2021). Rapid and accurate detection of SARS-CoV-

2 plays an important role in pandemic surveillance

(Alexandersen et al., 2020). CRISPR-based diagnostics

have been reported to have great potential for accurate

and timely detection of various types of viruses, including

Zika virus, human immunodeficiency virus, hepatitis C virus,

Frog virus 3, and Ebola virus (Asboe et al., 2012; Pardee et al.,

2016; Qin et al., 2019; Kham-Kjing et al., 2022; Lei et al.,

2022). The CRISPR/Cas system is an innate bacterial

adaptive immune system capable of degrading foreign

nucleic acids that enter the host cell (Horvath and

Barrangou 2010; Terns and Terns 2011). The Cas13a-

crRNA complex binds the target RNA and induces a

conformational change to activate nonspecific RNA

degradation, up to ~104 turnovers for LbuCas13a,

releasing cleaved RNA with fluorophores (RNA reporters)

for RNA detection (East-Seletsky et al., 2016; Shan et al.,

2019; Díaz-Galicia et al., 2022). Fluorescent signals can be

acquired in a fluorometer or microscope where fluorescent

probes are immobilized on a surface for image acquisition

and accurate quantitation (Kaminski et al., 2021). We

previously combined the CRISPR (clustered regularly

interspaced short palindromic repeats)-Cas (CRISPR-

associate) system with total internal reflection fluorescence

microscopy (TIRFM), which holds great promise for

amplification-free SARS-CoV-2 RNA detection (He et al.,

2021). Manual quantification of the difference in

fluorescence intensity between two fluorescent images

before and after collateral cleavage of the CRISPR system

reached a detection limit of 100 aM (60.2 copies/μL) (He

et al., 2021). However, detecting the existence and

concentration of viruses by manually processing the

fluorescent images is very time-consuming.

FIGURE 1
Schematic diagram of the CRISPR-Cas13a and TIRFM AI Systems for SARS-CoV-2 detection. (A) Illustration of the CRISPR-Cas13a and TIRFM
systems. CRISPR-Cas13a utilizes bound crRNA to specifically target viral RNA by base pairing. Biotin-coupled RNA reporters are then immobilized on
the slide surface and collaterally cleaved after sample introduction. Fluorescent images were captured before and after sample introduction. (B)
Changes in fluorescence signal intensity are indicated by preprocessing operations such as SP and SDP. Traditional machine learning and
transfer learning based on deep learning models are then initiated to confirm the feasibility and accuracy of FICTransDense.
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Efforts have been made to detect SARS-CoV-2 using

histological features employed by artificial intelligence (AI).

Traditional machine learning models such as logistic

regression, multilayer perception (Roberts et al., 2021),

Support Vector Machine (SVM) (Rendon-Gonzalez and

Ponomaryov 2016), K-Nearest Neighbors (KNN) (Nugroho

et al., 2021), Decision Tree (DT) (Das et al., 2019), and Deep

Neural Networks such as AlexNet, VGGNet16, ResNet50,

DenseNet (Hasan et al., 2021), and SqueezeNet are

prevalently used for analysis of chest computed

tomography images with high accuracy (0.76–0.98 for

traditional machine learning models and 0.88–0.99 for deep

learning models) on public datasets (Bao et al., 2020; Islam

et al., 2021). The involvement of AI facilitates the diagnosis of

diseases by reducing the time and effort of manual

(radiologist) examinations. Furthermore, deep learning

models can effectively aid in the diagnosis of diseases,

including stroke (Xie et al., 2021), leukemia (Zhang et al.,

2022), etc.

Aside from detecting viral infections via histology, AI has

made significant contributions to fluorescent image analysis.

Gou et al. (Gou et al., 2019) developed an image processing

method that uses a two-step strategy for each fluorescent

image to exclude auto-fluorescence or dust. Ioannidis et al.

(Ioannidis et al., 2021) reported a normalized preprocessing

protocol for processing heterogeneous fluorescence images

in terms of image magnification. Zhang et al. (Zhang and

Zhao 2019) applied preprocessing methods such as size

adjustment and data expansion to each fluorescence

dataset and then used CapsNet to classify the subcellular

localization of proteins with an accuracy of 93.08%.

(Korfhage et al., 2020). developed a deep learning

approach for cell detection and segmentation, which

accepts two fluorescent images (a nucleus image and a

cytoplasm image) as input. The nucleus channel is used to

improve the quality of cell detection and segmentation.

(Shiaelis et al., 2020). demonstrated that single-particle

fluorescence microscopy combined with deep learning can

rapidly detect and classify different concentrations of viruses

with a limit of detection of 6 × 104 plaque-forming units/mL.

Although current preprocessing methods and models have

achieved excellent performance on both medical and

fluorescent images, no preprocessing techniques that deal

with two TIRF images and simultaneously detect virus

concentration by AI algorithms have been reported.

Besides, the large datasets in our study are not available.

FIGURE 2
Transfer learning training strategies, where the last layer has
been modified for three types of classification tasks. The first
training process freezes the feature extraction layers and updates
only the classification layer. The accompanying second
training process updates all parameters in the CNN layers.

TABLE 1 Comparative results of the underlying models.

Alternative
Preprocess

Index SVM KNN DT VGG-
16

ResNet-
152

EfficientNet-
B7

DenseNet-
121

SDP Accuracy 94.52% 97.26% 100.00% 93.15% 98.63% 98.63% 100.00%

Precision 94.69% 97.37% 100.00% 93.34% 98.68% 98.69% 100.00%

Recall 94.52% 97.26% 100.00% 93.15% 98.63% 98.63% 100.00%

F1 Score 94.51% 97.23% 100.00% 93.15% 98.63% 98.63% 100.00%

Inference Time 7.32 ms 4.39 ms 0.10 ms 28.85 ms 37.88 ms 55.43 ms 36.07 ms

SP Accuracy 80.82% 89.04% 86.30% 93.15% 97.26% 91.78% 100.00%

Precision 80.97% 89.86% 86.25% 93.75% 97.46% 93.37% 100.00%

Recall 80.82% 89.04% 86.30% 93.15% 97.26% 91.78% 100.00%

F1 Score 80.25% 88.69% 86.20% 93.08% 97.28% 91.94% 100.00%

Inference Time 7.81 ms 4.81 ms 0.10 ms 27.67 ms 44.61 ms 50.81 ms 36.32 ms
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Transfer learning is beneficial to circumvent the need for

large amounts of labelled data due to the abundance of

knowledge gained in the pre-training phase from huge

datasets (Han et al., 2021) [e.g., ImageNet (Deng et al.,

2009)]. Specifically, the parameters of well-trained

Convolutional Neural Network (CNN) models on non-

medical ImageNet data [e.g., AlexNet (Krizhevsky et al.,

2017), VGGNet and ResNet (Krizhevsky et al., 2017;

Simonyan and Zisserman 2014; He et al., 2016)] can be

transferred to solve a fluorescent image classification task.

The goal of this study is to create an effective preprocessing

technique for merging two fluorescent images into one image and

then identifying the presence and concentration of SARS-CoV-

2 RNA fragments by fluorescent images. To deal with the

intensity or number of puncta changes in the fluorescent

images caused by pathogenic sample loading, we propose an

effective preprocessing technique (SDP). Therefore, based on the

SDP-processed dataset, we provide pre-trained DenseNet-121 as

Fluorescent Images Classification Transfer learning based on

DenseNet-121 (FICTransDense) to achieve a fast, accurate,

and reliable AI-Boosted CRISPR-Cas13a and TIRFM system

for SARS-CoV-2 detection.

Materials and methods

Dataset preparation

A schematic diagram of the CRISPR-Cas13a and TIRFM

AI System for SARS-CoV-2 detection is depicted in Figure 1.

LwaCas13a protein is purified in accordance with previous

protocols. 150 µL of 20 nM LwaCas13a, 16.7 nM crRNA,

2 units of murine RNase inhibitor (New England Biolabs),

reaction buffer (40 mM Tris-HCl, 60 mM NaCl, 6 mM

MgCl2, pH 7.3), and 120 nM RNA reporters are mixed

with 100 pM (6.02×107 copies/μL), 1 nM (6.02×108 copies/

μL) target RNA, or 1 nM negative RNA. Reactions proceed at

room temperature for 5–20 min (He et al., 2021). The

sequences of crRNA, target RNA, negative control RNA,

and RNA reporter are listed in Supplementary Tables

S1–S4. TIRFM is calibrated with fluorescent microspheres

to check the illumination pattern. The slides and coverslips

are treated in a similar manner for different batches and

imaging conditions, such as laser intensity and exposure

time. TIRF image datasets are obtained on the same day

for samples with 100 pM, 1 nM RNA of SARS-CoV-2 as the

positive group, and 1 nM RNA of Middle East Respiratory

Syndrome (MERS) virus as the negative control. The

effectiveness of the dataset is validated by performing

qPCR to determine target concentrations and showing the

correlation between qPCR and CRISPR measurements (data

not shown) (He et al., 2021). qPCR is the gold standard for

RNA detection, which cross-validates the detected

concentration derived from fluorescent images before and

after CRISPR reactions. For each concentration, we create

three channels and assayed them in triplicate on one slide,

imaging each sample about 50 times before (namely BeIn)

and after (namely AfIn) sample introduction, respectively.

For the same channel, we sort the images in ascending order

based on the fluorescence intensity of the BeIn and AfIn

slides, respectively. A total of 455 pairs of images are

collected, including 156 pairs of negatives, 151 pairs of

100 pM SARS-CoV-2, and 148 pairs of 1 nM SARS-CoV-

2. The image dimensions can be represented in a matrix

shape of 2044 × 2048 × 3, representing height, width, and

color channels, respectively.

Image preprocessing

Data quality affects algorithm performance. The

imbalance and bias in the data distribution could weaken

the capability of algorithms (Roccetti et al., 2019; Roccetti

et al., 2021; Strickland 2022). Effective image preprocessing

methods should be developed to improve image quality and

ensure the reliability of the dataset. The preprocessing

procedures consist of three steps: exclusion of outliers,

fluorescent images merging, and data augmentation. As

the concentration of SARS-CoV-2 increases, the

fluorescence signal on the slide gradually decreases after

sample introduction due to collateral cleavage of

fluorescent probes immobilized on the slide surface (Wang

et al., 2022). The change in fluorescence intensity between

FIGURE 3
Confusion matrix of DT on the SDP test dataset, Dense Net-
121 on the SDP, and DenseNet-121 on the SP test dataset. All test
samples were correctly predicted as true labels.
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BeIn and AfIn is stronger for virus identification. However,

during wet experiments, some fluorescent molecules do not

bind to biotin, forming complexes that still float above the

surface of the slide in BeIn, while part of them can be washed

out in AfIn. Consequently, the fluorescence intensity

difference will be higher than the actual value. On the

other hand, any impurities and substances with

autofluorescence (Duong and Han 2013) will induce

fluorescence in AfIn, accompanied by reduced

fluorescence intensity differences. Therefore, the exclusion

of outliers is necessary for the models to achieve better

classification performance. For each experiment, the

average pixel intensity of the images before or after

sample introduction is calculated. The threshold range can

then be calculated using Eq. 1, which is determined by the

median and standard deviation (SD) of the fluorescence

intensity within an image list. The images in a list whose

fluorescent intensities are outside the threshold range are

considered outliers and are excluded.

Threshold range � [median − SD,median + SD] (1)

Eventually, 154 image pairs of negative control, 111 image

pairs of 100 pM SARS-CoV-2, and 100 image pairs of 1 nM

SARS-CoV-2 are retained.

FIGURE 4
RGB (Red, Green, and Blue) histograms of SP and SDP images among different groups (negative, 100 pM SARS-CoV-2 and 1 nM SARS-CoV-2).
The horizontal axis represents the pixel values, and the vertical axis represents the count of a specific pixel value. The number of pixels with values
greater than 100 (in the SP-processed image) and 60 (in the SDP-processed image) is nearly zero. (A) RGB histograms between different groups of a
SP-processed image, with pixel values between 0 and 20. (B) RGB histograms between different groups of a SP-processed image, with pixel
values between 20 and 100. (C) RGB histograms between different groups of an SDP-processed image, with pixel values between 0 and 5. (D) RGB
histograms between different groups of an SDP-processed image, with pixel values between 5 and 60.
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The difference between BeIn and AfIn is highlighted and

visualized by the merging of fluorescent images via the

following three preprocessing methods:

1) Subtraction Preprocessing (SP) refers to the subtraction

operation of the pixel values of the two corresponding

fluorescent images between BeIn and AfIn using the

cv2 toolkit.

2) Division Preprocessing (DP) refers to dividing each pixel

value of BeIn by the pixel value of AfIn between a pair of

images using the cv2 toolkit.

3) Setting and Division Preprocessing (SDP) is proposed to

improve the DP method. If there is a pixel value of zero in

AfIn, the result of division is equal to 0 using the cv2 toolkit.

To retrieve the difference value, we set the pixel value to one

in AfIn if the original value is 0 and then continue to perform

the DP operation between image pairs.

Finally, image augmentation techniques such as

random rotation, horizontal flipping, and vertical

flipping are used to avoid model overfitting. These

geometric transformations are intended to make the

algorithms invariant to changes in position and

orientation (Taylor and Nitschke 2018). The end-to-end

classification process consists of random dataset splitting

(80% for training and 20% for test), feature extraction,

traditional machine learning, and transfer learning

initiated by a deep learning-based model.

Traditional machine learning

Prior to classification, we process the input images via

feature extraction. To relieve the computational burden,

images are resized to 256 × 256 × 3. In image processing,

histograms are used to depict frequency distributions of these

intensity values. The histogram is a graphical representation

of the data where pixel values are grouped into continuous

bins, with each range corresponding to the distribution

frequency (Prasetio et al., 2018). The histogram contains

image features in the blue, green, and red channels of

negative control, 100 pM or 1 nM SARS-CoV-2 samples

generated by the cv2 toolkit. Different approaches

including SVM, KNN, and DT models are initialized to

process the histogram features and generate classification

results.

FIGURE 5
Plotting the feature extraction and fine-tuning methods in transfer learning based on DenseNet-121 with SDP or SP datasets. (A) Classification
accuracy performance on SDP dataset. (B) Classification accuracy performance on SP dataset. (C) Classification loss on SDP dataset. (D)
Classification loss on SP dataset. Acc, Accuracy.
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Transfer learning based on deep learning

For transfer learning, we combine both feature extracting and

fine-tuning methods, followed by a classification of negative

control, 100 pM or 1 nM SARS-CoV-2. Prior to the dataset

feeding, the images are resized to 224 × 224 × 3. The whole

training process consists of two procedures (Figure 2). In the first

training stage, feature extraction layers are fixed, while the

parameters of classifier layers are updated. Then, based on the

first training results, all parameters of the feature extraction layer

and the classifier layer are updated in the fine-tunning stage

(i.e., second training stage). VGG-16, ResNet-152, DenseNet-

121, and EfficientNet-B7 are chosen for our transfer

learning task.

During the training and backpropagation processes, an

optimization strategy is utilized to rapidly minimize the loss.

Gradient descent is used to update the learnable parameters of

networks while minimizing the loss. Gradient descent provided

that the cost function has the maximum growth rate and the

direction in which each learnable parameter is updated (Ruder

2016). While Adam optimizer is an efficient method that

computes individual adaptive learning rates for different

parameters based on estimates of the first-order moments and

second-order moments of the gradient (Kingma and Ba 2014).

The initial learning rate is set to 0.01 and drops by 10% every

seven epochs. For both the first and second training, the training

epoch is set to 20.

Evaluation metrics

To provide an elaborate evaluation of the seven models

involved in our study, various evaluation metrics including

Accuracy, Precision, Recall, F1 Score (GC et al., 2021),

Inference Time, and Confusion Matrix (Sultan et al.,

2019)are employed to evaluate the underlying models.

Considering the slight imbalance between the numbers of

each class, we calculate the weighted average value of each

metric.

The F1 Score is used to quantify the ability of a classifier with

respect to accuracy, and is defined as in Eq. 2:

F1 Score � 2 × Precision × Recall ÷ (Precision + Recall) (2)

Precision is intuitively the ability of the classifier not to label

positive samples as negative, and is defined as in Eq. 3:

Precision � TP ÷ (TP + FP) (3)

Recall is intuitively the ability of the classifier to find all positive

samples for each class, and is defined as in Eq. 4:

Recall � TP ÷ (TP + FN) (4)

Accuracy metrics determine whether an image of an SP or SDP

belongs to a sample with negative, 100 pM or 1 nM SARS-CoV-

2 nucleic acid, as defined by Eq. 5:

Accuracy � (TP + TN) ÷ (TP + TN + FP + FN) (5)
Where TP is the number of predicted positive cases that are

indeed positive, FP is the number of predicted positive cases that

are indeed negative, FN is the number of predicted negative cases

that are indeed positive, and TN is the number of predicted

negative cases that are indeed negative (Mehrotra et al., 2020).

Inference Time is an instant indicator showing the time

cost of using a pre-trained model to output a test prediction

result. Confusion Matrix is a visual tool for supervised

learning, which reflects the prediction results compared to

the ground truth on test datasets and demonstrates the

ability of the classifier to perform multi-classification

(Sultan et al., 2019).

Grad-CAM for visual explanations of
transfer learning based on deep learning

Gradient-weighted Class Activation Mapping (Grad-

CAM) (Selvaraju et al., 2017) uses the gradients of the

label flowing into the final convolutional layer to produce

a coarse localization map, which highlights important

regions that contribute to the output. Grad-CAM is one of

the effective techniques for producing visual explanations of

classifications from CNN models, and we use Grad-CAM to

generate visualizations of explainable regions of the results

output by deep learning-based transfer learning.

Results

Weighted average value of evaluation
results

In this study, we implement seven models to achieve

classification of fluorescent images obtained from samples of

negative control, 100 pM, and 1 nM SARS-CoV-2 RNA

fragments. All models demonstrate acceptable performance

(80.25%–100.00% of F1 Score) on both SP and SDP test

datasets (Table 1). The DT and Densenet-121 models achieve

excellent performance with 100% Accuracy, Precision, Recall,

and F1 Score on the test dataset. Besides, DT spends a minimum

time of 0.10 ms to infer the prediction, while FICTransDense

spends 36.07 ms on an SDP image. Except for VGG-16, all

algorithms show great performance on all evaluation metrics

for the given SDP test dataset compared to the SP test dataset.

Furthermore, considering the decent performance of transfer
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learning based on DenseNet-121 shown on the SDP dataset, we

propose the pre-trained DenseNet-121 as FICTransDense.

Confusion matrix for algorithms
performance

To compare the performance of DenseNet-121 with other

algorithms, we use a Confusion Matrix to summarize the

classification performance. In the test dataset, there are

26 images for the negative control, 25 images for the

100 pM, and 22 images for the 1 nM SARS-CoV-2 RNA

fragments. The results of the confusion matrix for

Densenet-121 on the SDP and SP test datasets and the DT

on the SDP test dataset are consistent with the results in

Table 1 (Figure 3).

Feature extraction in traditional machine
learning

Each panel contains blue, green and red channels

(Figure 4). The distribution of grayscale values in the red

channel is similar to that of the green channel (Figure 4A).

Besides, the distribution of grayscale values in the red channel

among the different groups is not significantly different from

that of the green and blue channels (Figure 4D). On the

contrary, the distribution of grayscale values in both green

and blue channels is distinct in the negative control, 100 pM

and 1 nM SARS-CoV-2 (Figures 4A–D). Thus, the grayscale

values in the green and blue channels are chosen as features

for traditional machine learning.

Feature extraction and fine-tunning
methods in transfer learning

For the dataset processed by SP or SDP, the test accuracy and

loss curves reach a plateau when using the feature extraction and

fine-tunning method, indicating the absence of overfitting for the

SD and SDP datasets (Figures 5A–D). For both feature extraction

and fine-tunning methods, the DenseNet-121-based transfer

learning performs equally well, while the VGG-16-based

transfer learning shows decrease in accuracy and an increase

in loss error on both SP and SDP test datasets during the second

stage of training (Supplementary Figures S3A–D).

FIGURE 6
Interpretation of image focusing by Densenet-121 on SP test dataset. The red region represents the important region contributing to the label.
As the concentration increases, the red regions in Grad-CAM become wider and deeper, showing a high degree of overlap with the fluorescence
regions in the original SP image.
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Grad-CAM for visual explanations of
transfer learning based on Densenet-121
on the SP test dataset

Images processed by SP are fed to generate Grad-CAM.

Grad-CAM map correctly highlights the fluorescence-

determining area for samples with negative, 100 pM and

1 nM SARS-CoV-2 nucleic acid. The distribution and area of

fluorescence intensity corresponding to the different groups

differ, which is consistent with the original images processed

by SP (Figure 6). Besides, with the increasing fluorescence

intensity of negative, 100 pM and 1 nM SARS-CoV-2, the red

region in Grad-CAM becomes wider and deeper, which is

consistent with the concentration change. In contrast, the

Grad-CAM results of SDP image fail to distinguish the

fluorescence regions between the different groups.

Effect of preprocessing on model
performance

Two kinds of preprocessing techniques are used to assist the

model in classifying negative, 100 pM, or 1 nM SARS-CoV-2.

First, the data cleaning technique is designed to exclude outlier

images as defined in Eq. 1. Second, the intensity is adjusted to one

when the pixel value equals 0 and the pixel values are divided

using the fluorescence images before and after sample

introduction. Among the results, the comparison results of the

preprocessing effect on the model performance are shown in

Tables 2, 3. Table 2 shows the effect of excluding outliers on the

model output. The performance of Densenet-121 on SDP and SP

datasets improved from 97.80% to 100% accuracy, respectively.

Similarly, DT shows a sharp increase of about 6.59%,

demonstrating the sensitivity to outlier exclusion (Table 2).

Table 3 demonstrates how much of an impact the SDP

technique has on model capacity compared to the DP control.

With the exception of SVM, using the SDP technique, the F1

scores of DenseNet-121 and DT increased to 100% from 97.22%

and 95.92%, respectively. The other deep learning-based models

for transfer learning grow differently, while the F1 score of VGG-

16 booms sharply from 79.28% to 93.15% (Table 3). SDP can

effectively enhance the performance of the model.

Discussion

In this work, we investigate seven algorithms for

classifying TIRF images into negative, 100 pM or 1 nM

TABLE 3 Performance variations between SDP and DP dataset of traditional machine learning and transfer learning based on deep learning.

Preprocess
type

Index DT (%) KNN (%) SVM (%) Dense-121 (%) EfficientNet-B7 (%) ResNet-152 (%) VGG-16 (%)

SDP Accuracy 100.00 97.26 94.52 100.00 98.63 98.63 93.15

Precision 100.00 97.37 94.69 100.00 98.69 98.68 93.34

Recall 100.00 97.26 94.52 100.00 98.63 98.63 93.15

F1 Score 100.00 97.23 94.51 100.00 98.63 98.63 93.15

DP Accuracy 95.89 95.89 94.52 97.26 97.26 97.26 79.45

Precision 95.99 96.09 94.76 97.36 97.26 97.26 83.14

Recall 95.89 95.89 94.52 97.26 97.26 97.26 79.45

F1 Score 95.92 95.88 94.56 97.22 97.26 97.26 79.28

TABLE 2 Performance variations for different dataset types.

Data type Index FICTransDenset (%) Densenet-121 on SP
dataset (%)

DT on SDP dataset
(%)

Outliers excluded data Accuracy 100.00 100.00 100.00

Precision 100.00 100.00 100.00

Recall 100.00 100.00 100.00

F1 Score 100.00 100.00 100.00

Raw data Accuracy 97.80 97.80 93.41

Precision 97.93 97.88 93.52

Recall 97.80 97.80 93.41

F1 Score 97.80 97.79 93.41
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SARS-CoV-2 samples using an effective image preprocessing

method. Data quality can be ensured by keeping consistent

experimental conditions and excluding outliers in the

datasets. Both traditional machine learning (SVM, KNN,

DT) and deep learning-based transfer learning (DenseNet-

121, EfficientNet-B7, VGG-16, ResNet-152) algorithms

achieve an excellent performance of at least 93.15% on all

metrics (in terms of F1 Score, Accuracy, and Recall) after SDP

treatment. FICTransDense and DT reveal the highest precise

classification of 100.00%. Using the pre-trained models,

FICTransDense requires about 36.07 ms to give the

predicted classification results without time delay or

additional tedious labor and effort. Meanwhile, the

proposed SDP technique is shown to be effective in

improving the performance of most traditional machine

learning algorithms and transfer learning based on VGG-

16, DenseNet-121, EfiicientNet-B7, and ResNet-152 models

(Table 3). However, we are unable to visually explain the SDP

technique in negative control, 100 pM and 1 nM SARS-CoV-

2 fluorescent images using Grad-CAM. The majority of pixel

values in all types of SDP images are less than 10 (Figures

4C,D), with most of them being less than 3 (Figure 4C), which

means that the majority of the images are nearly black. In this case,

we speculate that the differences between the different groups are not

restricted to fluorescence localization but are more related to the

values of the total pixel intensity or distribution, and that Grad-

CAM is capable of identifying the parts of the input image that can

significantly affect the classification score. On the contrary, the

distribution of grayscale values between 20 and 100 in the green

channel (Figure 4B) should correspond to the fluorescence region,

indicating consistency with the visualization results of the SP by

Grad-CAM (Figure 6). Overall, the proposed FICTransDense

demonstrates the best performance in estimating SARS-CoV-

2 RNA fragment concentrations after multi-category classification

of images collected via TIRFM and CRISPR-Cas13a techniques. In

view of the limitation that our study only deals with the issue of

classifying SARS-CoV-2 RNA segments at three concentrations, the

performance of FICTransDense on more classes of SARS-CoV-

2 RNA remains to be validated.

In the future, FICTransDense could be integrated with

commercially available image processing software, such as

ImageJ, for rapid analysis of SARS-CoV-2 virus concentration

in the context of a given fluorescent image. Besides, similar

research dilemmas, such as distinguishing between two

images before and after a specific treatment, could benefit

from this work. Furthermore, considering the

programmability of crRNA, FICTransDense holds great

potential for accurate and instantaneous detection of

various pathogenic RNAs using images collected via

TIRFM and CRISPR-Cas13a techniques.
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